

Ultimate State

MEM 355 Performance Enhancement of Dynamical Systems

Harry G. Kwatny
Department of Mechanical Engineering & Mechanics
Drexel University

Outline

- Brief Review
- Design Criteria two step process
 - Ultimate state error (this lecture)
 - Transient response (following lectures)
- Ultimate Error Response to Command ~ Unity Feedback Systems
- Ultimate Error Response to Command ~ General Case
- Example
- Error Response to Disturbance

Brief Review

- Cruise Control Example
 - Introductory example, illustrating basic concepts & objectives of feedback control
- Introduction of 3 essential transfer functions of generic closed loop
 - Sensitivity function (<u>command to Error</u>), Complementary sensitivity function (<u>command to output</u>), & <u>command to control</u>
- Bode and Nyquist Plots
 - Robustness measures, gain and phase margins
 - Sensitivity function peak implications for robustness, reduced damping ratio, peak overshoot

Control System Performance

- Command tracking
 - Match output to changing command (minimize/eliminate error)
 - Shape transient response (overshoot, damping)
- Disturbance rejection
 - Minimize/eliminate output error while system is subjected to disturbance
 - Shape transient response (overshoot, damping)
- Stabilization
 - Insure adequate degree of stability (decay rate, damping, pole locations)
 - Insure stability robustness (gain & phase margins)
- Handling qualities
 - From perspective of operator (pilot, driver) maneuverability, stability
- Reliability, Safety emerging theory

Unity Feedback Systems

 $L(s) \triangleq G(s)K(s)$ open loop transfer function

 $Y(s) = \frac{L(s)}{1 + L(s)} \overline{Y}(s)$ output response transfer function (closed loop)

 $E(s) = \frac{1}{1 + L(s)} \overline{Y}(s)$ error response transfer function (closed loop)

$$e(t) = \mathcal{L}^{-1}[E(s)]$$
, then plug in $t = \infty$ to get $e(\infty)$

or, much easier, use Final Value Theorem: $e(\infty) = \lim_{s \to 0} sE(s)$

Error Response to Polynomials

Test inputs: polynomial in t, step, ramp, parabola, ...

step:
$$u(t) \rightarrow 1/s \Rightarrow e(\infty) = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s} = \frac{1}{1 + \lim_{s \to 0} L(s)}$$

ramp:
$$tu(t) \rightarrow 1/s^2 \Rightarrow e(\infty) = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s^2} = \frac{1}{\lim_{s \to 0} s L(s)}$$

parab:
$$\frac{1}{2}t^2u(t) \to 1/s^3 \Rightarrow e(\infty) = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s^3} = \frac{1}{\lim_{s \to 0} s^2 L(s)}$$

Position constant: $k_p \triangleq \lim_{s \to 0} L(s)$

Velocity constant: $k_{v} \triangleq \lim_{s \to 0} s L(s)$

Acceleration constant: $k_a \triangleq \lim_{s \to 0} s^2 L(s)$

Transfer Function "Type"

A transfer function G(s) of the form

$$L(s) = K \frac{n(s)}{s^k d(s)}$$
 where s is not a factor of $d(s)$ or $n(s)$

is said to be of *type k*.

Note that:

$$k_{p} = \lim_{s \to 0} L(s) = \begin{cases} c \neq 0 & k = 0 \\ \infty & k \ge 1 \end{cases}$$

$$k_{v} = \lim_{s \to 0} s L(s) = \begin{cases} 0 & k = 0 \\ c \neq 0 & k = 1 \\ \infty & k \ge 2 \end{cases}$$

Ultimate Error Table ~ Unity Feedback Systems

Type Input	0	1	2
u(t)	$\frac{1}{1+k_p}$	0	0
tu(t)	∞	$\frac{1}{k_{v}}$	0
$t^2u(t)/2$	%	8	$\frac{1}{k_a}$

Example

Output responses for standard step, ramp, parabola

Consider a unity feedback, type 1 system with

$$L(s) = \frac{1}{4} \left(\frac{s+9}{s} \right) \left(\frac{1}{s+1} \right)$$

Error responses for standard step, ramp, parabola

General Case

The closed loop input response transfer function is

$$G_{y}(s) = \frac{G}{1 + GH}$$

The error response transfer function is (recall $e = \overline{y} - y$)

$$G_{e}(s) = 1 - G_{y}(s) = \frac{1 + GH - G}{1 + GH}$$

$$e(\infty) = \lim_{s \to 0} sG_{e}(s)\overline{Y}(s)$$

Ultimate Error Table ~ General Case

Type Input	0	1	2
u(t)	$\lim_{s\to 0}G_{e}\left(s\right)$	0	0
tu(t)	∞	$\lim_{s\to 0} sG_e\left(s\right)$	0
$t^2u(t)/2$	8	8	$\lim_{s\to 0} s^2 G_e(s)$

Example: Power System Load Tracking

Example, cont'd

Example: cont'd

Example: cont'd

Outer Loop Compensator:

Type 1:
$$G_c(s) = \frac{200s^2 + 16s + 1.5}{s}$$

Type 2: $G_c(s) = \frac{200s^2 + 16s + 1.5}{s^2}$

Type 2:
$$G_c(s) = \frac{200s^2 + 16s + 1.5}{s^2}$$

Ultimate Error Due to Disturbance

Transfer Function
$$d \rightarrow e$$
: $G_{ed} = \frac{G_2}{1 + G_1 G_2 H}$

$$e(\infty) = \lim_{s \to 0} sG_{ed}(s)D(s)$$

Example: Step Disturbance

$$e(\infty) = \lim_{s \to 0} sG_{ed}(s)D(s)$$

step disturbance: D(s) = 1/s

$$e(\infty) = \lim_{s \to 0} \frac{sG_2}{1 + G_1G_2H} \frac{1}{s} = \frac{1}{\lim_{s \to 0} \frac{1}{G_2(s)} + \lim_{s \to 0} G_1(s)H(s)}$$

To reduce error:

increase type or gain of G_1H

reduce gain of G_2 (typically not possible)

Example

$$G_{2}(s) = \frac{1}{s(s+25)}, H(s) = 1$$

$$G_{1}(s) = \begin{cases} (a): P & 1000 \\ (b): PI & 1000 \frac{(s+2)}{s} \end{cases}$$

Response to command

$$(a) G_{\overline{y}e} = \frac{s(s+25)}{s^2 + 25s + 1000},$$

$$e_y(\infty) = \lim_{s \to 0} s \frac{s(s+25)}{s^2 + 25s + 1000} \frac{1}{s} = 0,$$

First confirm that closed loop is stable!!

Response to disturbance

$$a) G_{\overline{y}e} = \frac{s(s+25)}{s^2 + 25s + 1000},$$

$$G_{de} = \frac{1}{s^2 + 25s + 1000}$$

$$e_y(\infty) = \lim_{s \to 0} s \frac{s(s+25)}{s^2 + 25s + 1000} \frac{1}{s} = 0,$$

$$e_d(\infty) = \lim_{s \to 0} s \frac{1}{s^2 + 25s + 1000} \frac{1}{s} = \frac{1}{1000}$$

$$(b) G_{\overline{y}e} = \frac{s^2 (s+25)}{s^3 + 25s^2 + 1000s + 2000}, \qquad G_{de} = \frac{s}{s^3 + 25s^2 + 1000s + 2000}$$

$$e_y(\infty) = \lim_{s \to 0} s \frac{s^2 (s+25)}{s^3 + 25s^2 + 1000s + 2000} \frac{1}{s} = 0, \qquad e_d(\infty) = \lim_{s \to 0} s \frac{s}{s^3 + 25s^2 + 1000s + 2000} \frac{1}{s} = 0$$

$$G_{de} = \frac{s}{s^3 + 25s^2 + 1000s + 2000}$$

$$e_d(\infty) = \lim_{s \to 0} s \frac{s}{s^3 + 25s^2 + 1000s + 2000} \frac{1}{s} = 0$$

Summary

- Concept of "ultimate error,"
- Formulae for unity feedback systems in response to commands,
- Introduction of "error constants,"
- The concept of system "type" and its role in command tracking,
- Formulae for general feedback systems in response to commands and disturbances.

